LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR -90-2004

Lns Alamos Nalhonal Laboratory 3 operated Dy the University of Calfornia 1or the United Stales Department of Energy under contract W-7405-ENG-36

LA-UR--90-2004

DE90 013173

TITLE CROSS-VALIDATION, LEARNING SET TRANSFORMATIONS, AND GENERALIZATION

AUTHOR(S) David H. Wolpert

sueMmitTED TO Rocky Mountain Conference on Artificial Life,
l.as Cruces, NM, June 1990

DISCLAIMER

This repurt was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States (iovernn.ent nor any agency thereof, nor any of their
employees, makes any warranty, eapresa or implied, or assumes any lega! liability or responsi-
bility for the accuracy, completeness, or usefulm w of any information, spparatus, product, or
proceas disclosed, r represents that ils use would not infringe privately owned rights. Refer-
ence hereip 10 any specific commercinl product, process, or service by trade name, trademark,
marulacturer, or otherwise does not neccessurily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Giovernment or any agency thereol The views
and opinions of authors expressed herein do not necessurily state or reflect those of the
United States Government or any agency thereof.

Ny acr ptances of thiy arlicle the publisher rgcognizes that the U 5 (overnment relains a nonesclusive royally free ncansa (o publish or reproduce
the published lorm of 1hey contnibution or () slfow othars to do 10, o U S Govarnmenl purposes

The Loy Alamos National Laboratory requests that the pubhsher (duntfy (his srhcle as work performed under the L. spicas of the U 5 Daparimant nt E nergy

MASTER
Los Alammos iy
%

Novsas et ana s AICTDIBIITIAN A THHO ANCHANENY IQ 1HNTIMITED

CROSS-VALIDATION, LEARNING SET TRANSFORMATIONS, AND GENERALIZATION

by David H. Wolpen
Theoretical Division, MS B213, LANL, Los Alamos, NM, 87545 (dhw@coot.lanl.gov), (505) 665-3707.

Abstract: This paper discusses using cross-validation as an 2id to generalization. It starts by showing how Lo use cross-vali-
dation to decide amongst a set of generalizers when the leaming set consists of examples of the texi-to-phoneme problem. In
addiuon to reproducing the learning set perfectly, the generalizer so chosen by cross-validation has an error rate on the testng
set (7%) close to that which NETtalk has on the learning set (5%). This paper then presents an example of using cross-valida-
ton as part of a front-end to generalizers, i.e., as part of an algorithm for pre-pricessing a leaming set of input/output cxam-
ples before trying 1o generalize from it. The results of thirty-six comparisons between the performance of a gencralizer and the
performance of the generalizer with this front-end are presented. These comparisons involve numerical, Boolean, and visuul
tasks. [n all but one of the comparisons the froat-end improves the generalization performance, often inducing perfect gencrali-
zation. (The average ratio of the generalization *rror rate with the front-end 1 the generalization error rae without the fron:-
end is .23, +/- .05.) Finally. this paper ends by di.cussing some of the suutler mathematical issues involved in using cross-vahi-
dation to help generalization.

INTRODUCTION

This paper concemns the problem of inferring 2 function from a subset of R" 10 a subset of R (the parent

function) given a set of m samples of that function (the learning se:). The subset of R" is the input space, and

the subset of R is the oulput space. A question is any input space value not contained in the learning set. An al-
gorithm which makes a guess as (0 a parent function (for any value of n), basing the guess only on a lecaming

set of m R"+l vectors read off of that parent function, is called a generalizer. A generalizer infers an appropri-
ate ourput for a question via the parent runcton it guesses.

Much of the research on generalization has followed two approaches. The first is to "just do it": build an
engine which reproduces the learning set, and then use that cngine to generalize. An example of this approach
is back-propagaled neural nets {1]. Schemes of this type devote most of their auention lo rcproducing the
lcaming set and expend little (if any) effort at trying w© ensure good generalizauon. In effect, these schemes
simply hope that good generalization accompanics reproducing the leaming set. The advantage of genceralizers
of this type is their wide range of applicability.

The second approach to generalization research is typified by Valiant-style machine learning [2]. Here com-
Flcw rigor is insisted upon (i.c., no reliance on hope), but generality and real-world applicability are sacri-
iced to achieve the rigor. For example, most such schemes can not even address the following toy problem:
"You have a learning set consisting of 3 input/output pairs where the input space is one-dimensional, (1.0,
1.3}, (2.0, =), and (v2. 5.0}, and no other knowledge; guess the outpui corresponding to 5.5". Such schemes
don’t even address the full problem of generalization, as it was defined above.

There are a number of approaches which fall in between these first two, using as much rigor as possible,
but also exploiting heuristics, t0 maintain applicability o real-world problems. Amongst these approachcs
are (roughly in increasing order of sophistication) Holland's classifier system (3], memory-based rcasoniny,
schemes [4K regularization theory (5], other schemes for overt surface fiting of a parent function to the lcarr-
ing sct (6-10], and information-theory based approaches (11, 12]. This paper discusses another intermedizie ap-
proach, cross-validation [13, 14]. Cross-validation is simply the idea that if you have a set of generalizers and
a learning sct and have to decide which of those generalizers to use with that leaming sct, you should choose
the generalizer which performs best al guessing one part of the learning set after being taught with the rest of
the lcaming set. The performance is usually measured with a squared guessing error, averaged over (some of)
the partitions of the leaming sct into two subsets. Many of the information-theory based approaches o gener-
alizaton can be viewed as vaniations of cross-validation (see (ootnote 4 in [14)).

Section I of this paper is an example of using cross-validation for the text-to-phoneme problem. This ¢x-
ample illustrates the eass with which cross-validaton can result in genernlizauon superior to that of back-
propagation. Scction I prescnts a more sophisticated example of using cross-validation, in this case using a so-
called “lattice generalizer front end” to pre-process a learning set before sending it on to a generalizer. Scction
Il presents tests of the efficacy of this front end. The conclusion from this example is that cross-validation
is a very powerful aid to such pre-processing. Finally, section 1V is a cursory overview of sorne of the subtier
mathematical issues involved with using cross-validation.

I. USING CROSS-VALIDATION TO BEAT NETtalk

NETulk is a feedforward ncural net constructed by Sejnowski and Rosenberg via back-propagation for the
tsk of reading English text aloud [15]. The input space consists of (an encoding of) seven letiers. The vulput

of the parent function is a mulu-dimensional representation of the phoneme an English speaker would assign
1o the middle (i.e.. fourth) of the seven letters if the reader encountered them while reading aloud. NETwlk
has an error rate of ~ 5% on its learning set, and ~ 22% on its testing set.

As a crude test of its utility, cross-validation has been used 10 build a generalizer for the reading aloud
task and the resulting performance has been compared to that of NETualk. This generalizer, using the same
leamning and lesting sets as Sejnowski and Rosenberg say they used {16], nas an error rate on the leaming set of
0% and an error rate on the tesung set of 7%, less than one third the error rate of NETtalk.

The details of how this generalizer is built can be found in {7]. One starts with a weighted average gener-
alizer, one of the simplest kinds of generalizers. For this problem the weighted average generalizer works by
finding the four elements of the leaming set which are closest o the queston, and wking a weighted average
of their outputs 10 make the guess. The weighting factor is the reciprocal of the distance between the question
and the learning set element, so the nearer an element of the leaming set is to the question, the more surongly
it is weighted in making the guess. Using a simple Hamming metric, such a generalizer results in 0% crror on
the lcarning set and 18% error on the testing set.

To use cross-validation, we can consider a set of weighted-average generalizers, all of which differ from
one antpg:errby using different versions of the standard Hamming metnc. Specifically, we can consider gencral-
izers of the form

4 4 7
guess = lZZl (y(x) /d@, x)1} / (X (1/d(q.x)]), where J(a, b) @ (T [p, (1 - &a_ . b)] 3.)
im i=1 a=1
is the Kronecker delia, letters in bold are vectors, roman subscripts of vecturs index the (input vectors of the)
clements of the leaming set nearest in input space to the question q, greek subscripts run over the input com-

ponents of a particular veclor, and the Py arc a set of seven real valued constants. The usual Hamming metric
has all the p = 1.

Different sets of Py Bive different guesses for the same lesuming set and question, i.e., they give dilfcrent
generalizers. Therefore we can vay the Py Measure the resultant cross-validation error for the leaming set,

and choose the p, with the lowest such error. We then use the generalizer induced by this optimal sct of p

1o Fcneralize from the entire lcarning set. The results of this stra'cyy are depicted in figure 1. Using the gen-
cralizer with minimal cross-vilidation error, we would chnose the genernlizer corresponding 'o the lcftmost
circle in the figure. This happens to be the generalizer which also gives the lowest crror rate on the testing
set. In fact, this gencralizer nas an error rate of unly 7% on the testing set; cross-validation has greatly im-
proved generilization efficacy.

II. MOTIVATION AND DEFINITION OF LATTICE GENERALIZERS

A generalizer is local if the guess it makes in rasponse 0 a question is determined by a proper subsct ot
the clements of the leaming set. Usually this subset consists of elements which are near (in input space) to
the questior. Such generalizers therefore rely on a fan of vectors connecting a question to those clements of
the lcarning set which are deemed important (for the task of making a guess for the qucstion's oulgun.
Weighted-average gencralizers, memory-g:sed reasoners {4], the local linear technique [9) and HERBIEs (6, 7]
are all local generlizers. Back-propagated neural nets are somewhat local - although not explicitly local gen-
cralizers, their guessing is often far more dependent on the nearby elements of the learning set than on any
others. A gencralizer is global if its guess is determined by all elements of the learning set. An example of .

lobal gererulizer is fitting the elements of the leaming set exactly with a iinear combination of clements
rom a se. of basis functions. Global generalizers have the advantage that they use all of the information in
the leaming scL Local generalizers have the advantage that they don’t “"overfit" the data of the learning sct,
and therefcre tend 10 be robust

Lattice generalizers (LGs) are a means of incorporuting global information into a local gencralizer so
that all the information in the learning set is exploited (while robustness of generalization isn't sacrificed).
A (ull description and discussion of LGs can be fourd in reference [17]. Here we are concerned with input-inde-
pendent LGs. In their simplest form, such LGs assume that the question and the clements of the leamning sct
all live on a lattice in the input space (hence the name lallice generalizer). The researcher provides a local gen-
cralizer for such a question and lcaming seL Thei the LG takes the original learning set and question and
transforms them into a "reduced” learning set and “reduced” question, both of which live in the same “reduced”
inpul/out?‘_tg s?nce. The algorithm for accomplishing the reduction is known as the Lattice Generulizer Front
End (LGFE). In LQs, instcad of feeding the original lcarning set and the original questinon straight to the oriy-
inal (so-called "back-end") local generalizer, the reduced learning set and reduced question are ted W the o
nal generalizer instead. The LGFE together with the back-end generalizer constitutes the full LG.

It is through the LGFE that lattice generalizers inake ase of global infonnation. The LGFE constructs the
reduced learning set from the gutpul components of the original leammizg set. The jnput components of the

original leaming set serve only to decide how to transform the output components of the original learning set
into the reduced learning set This decision is made using cross-validation, 1n concert with the back-cnd gener-
alizer. A loose description of how an input-independent LGFE works follows:

Assume we have a fan consisting of m input space vectors (r,}, 1 S i € m, which connects a question to m

clements of the learning set. Assume further that this fan connects some of the elements of the leaning sct
to each other (i.e., assume there exist ¢lements of the learning set such that if they are taken as the base for
the fan, the tips of the fan 2lso lie in the learning set). For any such base in the lcaming set, since the tips of
the fan lic on elements of the leaming set, we can examine the sct of m outputs of the learning set at these
tips. These m outpuls of the learaing set are taken as the specification of a single point in an m-dimensional in-
put space. The output associated with this m-dimensional input point is the output of the leaming set clement
at the base of the fan (see figure 2). By finding all bases for the fan which lie in the learning sct we can build
a set of pairs, (m-dimensional input veclors, associated mmul}. In this way we have used the fan 10 build a
new (reduced) leaming set from the output components of the old one. We can use the fan to read off the re-
duced question as well, and then we can feed this reduced question along with the reduced leaming sct to the
original back-end generalizer (instead of feeding it the original lecamning set).

If we go through this procedure for all fans which connect together elements of the original learning sct,
then we will build a set of reduced leaming sets, any one of which can be fed 1o the back-end generalizer. To
decide which of the fans to use, we apply cross-validation: pick the fan such that the new leaming set it pro-
duces has lowest possible average error at guessing part of itself from the rest of itself. (This cror is deter-
mined by running the reduced leaming set through the back-end generalizer.) After choosing a fan in this way
and using it to build a reduced leaming set and reduced question, use the back-end generalizer w'.h that re-
duced learning set and question o make the guess.

II. TESTS OF LATTICE GENERALIZERS

The results of thirty-six tests of the behavior o 1.Gs for nine separaie problems are presented in figures
3(a) thiough 3(i). The tests involved running the LG: on testing sets cntirely different from the leamning scts
with which they were taught All of the experiments were done with fans having only one tip.

To make things difficult, all of the e::rcrimems took place on a hypercube and used explicit surface-fitter
generalizers as the back-end (see [4-6] and [9]). Such generalizers usually perform much beuter when the data
1sn’t binary-encoded; such encoding constitutes handica[gg\hg the generalizers severely. As a result, these are
good tests of the efficacy of feeding a generalizer with an L .

For all of the nine problems presented here, the input space is six-dimensional, and each component of an
input vector can be cither a | or a 0. Therefore there are 64 possible input vectors; the sum of the cardinalitics
of the lcaming set and the lesting set is always 64. The figures rcpresent the average behavior of an LG for the
questions in the testing set. Four tesu‘ng set cardinalities were investigated for each of the nine problems; 8 cl-
cments, 16 clements, 32 elements, and 48 elements (corresponding 10 learning sets of $6 clements, 48 cle-
ments, etc.). For each size testing set, 20 tests were run by creating a random testing set of the given size,
‘The figures give the average percentage of wrong guesies over the 20 tests, for cach ol the nine problems, for
all four testing set cardinaliues. This gives a total of 36 tests.

Each ﬁ&ure shows both the genenlization error rate of the back-end used without an LGFE and the crror
with the LGFE in place. Each figure also shows the error rates of optimal random guessing (i.e., of always
guessing the mode of the output distribution) and of back-propagation. (The back-propagation data was gener-
ated with the George Mason University BPS 1.01.). The back-propagation wasn't fed via an LGFE - 1t was
trnined with the onginal lecaming set. Since back-propagated neural nets are designed for the h{pcrcubc. they
were used here as a sort of crude benchmark for problems taking place on a hypercube. In general, like any oth-
er g&nlizer. the generalizing behavior of back-propagation should usually be improved if it is fed through
an "C.

Tests 1-4: Figures 3(a) l.hrou?h 3(d) depict an LG's behavior for four binary-cncoded numerical problems.
The parent function for each problem has a 6 dimensional input space. The first 3 dimensions are the binary cn-
coding of a number between O and 7, us are the last 3 dimnnsions. The output is one of the bits of the hinary
encoding of the sum of these 2 numbers. Figure 3(a) represents the resulis for the first (least significant) out-
|i)ul bit, figure 3(b) the second output bit, and so on lhrouﬁh figure 3§d). For example, with input (1, 1, 0, 0,

. 0), the four output bits should be the bvinary cncodlns of 6 + 2 = 8, So for the situation depicted in figure
3(a), the correct output of a gencralizer would be a O, as ' would for figures 3(b) and 3(c); figure }id)
would have a | ns the correct output.

The back-er:d generalizer used for these first tour tests is a weighted average generalizer running over the
scven elements of the lcarning set nearest to the question, As with all the other ests presented here, tor these
tests the dark circles lying on the 0% axis have exactly 0% error in guessing. For cxample, in ligure 3(a), for
the case of 12 element lcaming scus there were zero generalizing errors out of 20 x 32 = 640 trials, The LGIE
induced perfect generaliration!

Test §: Fifure 3(e) also represents a test of a binary system with 6 dimensions of input und therefore
with 64 possible inputs. Here the parent function has a boolcan natre: if the first dimension has value 1, the
output is the valie of dimension 3, olherwise It's the value of dimension 6. Note that three of the input di-

:\hpnsions are unimportant; they're red herrings. The generalizer is again a (normalized) weighted average gener-
zer.

Test 6: Figure 3(f) again depicts a situation where the input space is binary and 6-dimensional, but now
the output space is no longer binary. The problem here is of a visual nature: taking *the 6 input dimensions as a
6-pixel wide window, scan from the left of the window until vou hit a 1; the output is the wumber of
scanned pixels. Here the generalizer fed by the LGFE works by finding the 7 points of the learning set nearest
ihe question, fitting a hyperplane 10 them, and outputting the height of the hyperplane when the input is the
question. (If the 7 nearest points are linearly degenerate, weighted averaging is used instead.)

Tests 7 and 8: Figures 3(g) and 3(h) depict the results of a test related to the (two clump)/(three clump)
problem: count the number of 1I's in the 6 components of the input. Test 7 (figure 3(g)) uses a hyperplane fit-
ter as its generalizer, just like test 6, whereas test 8 uses a weighted average generalizer. For the counting
problem, the parent function is given by output = X| + Xg + X3+ Xy + Xg + Xg, the sum of the 6 components

of the input. Since this function is a hyperplane, the hyperplane fitter generalizes better than the weighted av-
erage fitter. (The errors of the hyperplane fitter occur when the nearest neighbors of the question are linearly
degenerate, so some algorithm different from fitting ar:Ipaplane has to be used). Even so, the generalizer
consisting of an LGFE feeding into a hyperplane generalizer performs beuter than the hyperplane generalizer
alone; it generalizes perfectly in fact Just as a hyperplane fitter is well-suited 1o guessin'gI this parcnt func-
tion, a weighted average generalizer is poorly suited 10 this task. Nonetheless, except for the case of 8 point
testing sets, feeding the output of the LGFE into the average weighted generalizer still produces beuer gener-
alization than running an average weighted generalizer without the LGFE front-end.

Test 9: Figure 3(i) depicts the results for the parity problem. The problem has 6 bits of input as usual,
with 1 bit of output. The output is a 1 if there is an odd number of 1's in the input, O otherwise. (Note this
funcdon is just the output of the count function evaluated mod 2, i.e. it's the low bit of the count problem's
oumut if that output is binary-encoded.) The buck-end generalizer is the hyperplane fiter. Note how poorly
both back-propagation and the h[yperplane fitter perform, The reason for this isn't hard 10 find: both back-
propagation and the hyperplane-fitter are local algorithms. But on a h ube the six ncarest neighbors of
any question will differ from that question by one biL This means that for the parily problem the cuwputs of
the s:lx nem.;.st neighbors is exactly opposile to the correct guess. As a result, local generalizers perform ex-
tremely poorly.

Thep;?my problem is a iood example of how ‘R:rnicious bi encodings of problems are, taking placs as
they do at the vertices of a hypercube. After all, hyperplane fiter does much better at guessing the entire
ourput of the count I)roblem than at guessing the low bit of that output (given in the parily problem). Note,
however, that the full LG handles both the parity problem and the full count problem quite well, hypercube
or no. It handles them perfectly, in fact

The results of these tests are unambiguous. In all but one of the thirty-six cases presented here, using the
LGFE front-en' produces better generalization. (The only case where there was no improvement had the LG
pcrformingnj;ust Larely worse than the stmifm back-end.) Often use of the LGFE even results in perfect gener-
alization. The average value of the rutio ot the generalization error rate with the LGFE 1o the error rate with-
out one is .23, with an estimated error in this mean of .CS.

In addition to these empirical results, there are many theoretical advantages 10 LGs as well. A list of
some of them can be found in [17],

1V. SELF-GUESSING ANE CROSS-VALIDATION

As presented 30 far in this paper. cross-validation is used as a means for choosing amongst a fixed finite
set of possible generalizers of a leaming set. It can also be used 0 oy to construct the optimal generalizer of
a given leaming set from first principles. The idea is w demand Ferfet:t cross-validation on the leamning sct
along with some other restrictions, and thereby deduce the (h?e ully unique) optimal generalization of the
learninp set. When used in this way cross-validation is referred w as "self-guessing’ [14]. An overview cof
some ot the ‘nore interesting aspects o self-?ueulng is presented in this section.

There are seveal different versions of self-guessing. For example, if we only demand that the generalizer
perfectly guess a subset of the leaminr set when taught with the (sufficiently Iarﬁe) remainder of the lcam-
ing set, then we are enforcing weak self-guessing. We can instead demand, somewhat in the spirit of distribu-
lion-free leaming [2), that the function &“)e from inputs o outputs guessed b{ the generalizer have the fol-
lowing property: f(.) reproduces our learning set, and if we were given any leamning set of sumples of (),
then the generalizer would guess the input-output function (). This is called strong self-guessing, strong
sclf-guessing implies weak self-guessing, but not visa-versa,

ere are & number of interesting facts about self-guessing. For example, there are an uncountably infinite
number of self-guessing generalizers (both weak and strong) for any learning set. On the other hand, ng gener-
alizer is perfecuy self-guessing (either strongly or weakly) for gvery leaming set. Moreover, there are lcam-
ing sets for which there are no sell-guessing generalizers whatsoever, if we also require that the generalizer
obey the invariances of Euclidean space.

Of pammount importance is the following fact: It might be hoped that we could construct a set of restric-
tions on the set of generalizers such that, for any particular lcaming set, there is only a single generalizer

which both meets the restriction and is self-guessing (either weakly or strongly) for that leaming set. Unfor-
tunately, it can be proven that there is no such set of restrictions on the set of generalizers. Any such sct of
restrictions will either be under-restrictive (i.c., there are leaming sets for which there are more than one sclf-
guessing generalizer which meet the set of restrictions) or over-restrictive (i.e., there are leaming sets for
which there are no self-guessing generalizers which meet the set of restrictions).

This means that there are three ways to exploit self-guessing. The first is to stll demand perfect sclf-
guessing, but not to demand that a particular set of restrictions is met exactly. Insicad, one chooses the sclf-
guessing generalizer which obeys most closely (according to an appropriate retric) the set of resirictions. The
second approach is 10 demand neither perfect self-guessing nor that any set of restrictions is met exacdy, and
instead choose that generalizer which is as close as possible to being both self-guessing and in accord with the
set of restrictions. Finally, one can demand that some set of restrictions is met exactly, and then choose the
generalizer which is most closely self-guessing. The set of restrictions in this case is often implicit. (For cx-
ample, in section I, the set of restricions was that the generalizer be expressible as a weighted-average gener-
alizer.) When used with weak self-guessing, this last approach amounts to standard cross-validation.

CONCLUSION

This paper has presenied experimental evidence that cross-validation aids generalization greaily (i.c., re-
sults in markedly improved guessing). The evidence concemns both naive uses of cross-validation and ucing it in
a more sophisticated manner, as a leaming set preprocessor. In addition, this paper has surveyed some of the
theoretical aspects of cross-validation and discussed their implications for how and when cross-validation can
be profitably employed.
REFERENCES

{1] Rumelhart, D. E., and McClelland, J. L., Explorations in the microstructure of cognition, volumes I and ll. MIT Press, Cam-
bridge, MA, 1986.

[2] Valiant, L., A theory of the Learnable, Communications of the ACM, 27, 1134-1142, 1984.
(3] Holland, J., Adaptation in natural and artificial systems, University of Michigan Press, 1975.
(4] Swnfill, C., and Waltz, D., Toward memory-based ressoning, Communications of the ACM, 29, 12131228, 1986.

{5) Poggio, T.. and staff, MIT Al Lab, MIT progress in undersimding images. To be published in L. Bauman (Ed.), Procved-
ings of the image 1 nderstanding workshop. McLean, YA, 1938.

(6] Wolpert, D., A benchmark for how well neural news generalize, Biological Cybernetics, 61,303.313, 1989.

(7] Wolpert, D., Constructing a generalizer superior o NETtalk via a mathematical theory of generalization. To appear in
Neural Nerworks, July 1990,

[8] Wolpert, D., A mathematical theory of generalization: part 1. Complex Systems, in press.

(9] anner. 1.D., and Sidorowich, J.J., Exploiting chsos to predict the futurs and reduce noise, Los Alamou report LA.UR-#8.
901, 1988,

(10} Omohundro, S., Efficient algorithms with neural network behavior, Complex Systems, 1, 272.347, 1987,

{11} Akaike, H., Information theory and an extension of the maximum likelirood principle, /[EEE T-2as. Automatic Control,
AC-19,no. 6, 716-723, 1974,

(12] Rissanen, !., Stochastic complexity and modeling, The Annals of Statistics. 14, 1080-1100, 1986.

(13) Efron, B., Computers and the theory of statistics: thinking the unthinkable, S/AM REVIEW. 21, 460-480, 1979.

(14] Wolpert, D., A mathematical theory of generalizstion: part II. Complex Systems, in press. "Cross validation™ is a special
case of the property of "self-guessing” dascriber in this paper.

88.

{15} Sejnowski, T.J., and Rosenberg, C.R., NETtalk: & parallel network that learns 1o read aloud. Johns Hopkins University
Electrical Lngineering and Computer Science technical report JHU/EECS-86/01, 1988.

(16) Carterette, E.C., and Jones, M.H., Informal Speech, UCAL Press, Los Angeles, 1974,

\n Wolpené D., A new technique for improving the petformance of any generalizer, Los Alamos report LA-UR.-90-401. Sub-
mitted o (EEE PAMI.

m—
50 7

Testing set error 40
%).
rates (%) 30 F o

20 [o °

10 = & (@]
1 | | 1 | L
09 10 20 30 40 50 60

Cross-validaton error rates (%)

Figure 1. The horizontal axis gives the ermor rate of eight different generalizers for guessing 2189 clements of
the (reading aloud) leamning sei when taught with the rest of the leaming set. The vertical axis gives the error
rates for guessing the 2189 elements of the testing set when taught with the full leamning set (see reference [7]
for details). The correlation between the two errors is clear. The cross-validation error rale of NETualk is un-

known, but its error rate on the testing set is 22%.

Figures 2a and 2b. An input-independent LG. The left half of each figure represents a learning set and a question.
The clements of the learning set are solid circles, the question is an open circle. There are two dimensions of in-
put. The output value of each element of the learning set is indicated; here the outputs are all either 0, .S, or 1.
Also shown in the left half of each figure is a 2-tip fan, translated ov 7 several different bases. The fan in (1a)
makes a connection amongst the elements of the learning set twice. The fan in (1b) makes a connection amongst
the elements of the learning set four times. Every connection defines an element in a new leaming set over a 2-
dimensional input space. In (1a) for example the iwo such elemeuts are ((.5, 1}, 0) and ({.5, O}, 1). The new
learning seis made in this way are indicated in the right halves of each figure. The back-end generalizer uses thesc
new learning sets, The LOFE served to creale these new learning sets. To answer the question in (1a), the quest-

ion is convected (via the fan of (1a)) to the new question (Q, .5). The back-end genemlizer then akes this new
auestion anJ ths new learning set and comes up with a guess. 1o decide which of the fans o use, we find the fan

100% ﬂ LbJ ’ <]

SO% [=---vrorrrerrrrreene D T e S

o
(v

i ! |
o o
i) 2 o I = DO =
®
D ©
= T °
L *—o—© — 6—9o oo

Figures 3(a) through 3(i). Open circles represent the guessing of a generalizer. Solid circles
represent the guessing of that generalizer being fed by an LGFE. Squares represent the guess-
ing of back-propagation. The dotted line indicates the behavior of guessing the mode of the orig-
inal learning set’s output distribution.The horizontal axis gives the testing set size, and the
vertical axis gives the error rate at guessing the elements of the testing set. The specific probl-
em represented by each of the 9 figures is described in the text.

